
Three lectures on NonEquilibrium Stat Mech at ORNL, April 2008        1 

 

 
Oak Ridge National Laboratory 

 
April 2008 

 
Nonlinear response theory, chaos and the fluctuation theorem. 

 
 
 

 
Lecture I: 

 
Chaos, Lyapunov Exponents and Transport Coefficients 

 
By 

 
Denis J. Evans 

Research School of Chemistry, Australian National University 
Canberra, ACT 2601, Australia



Three lectures on NonEquilibrium Stat Mech at ORNL, April 2008        2 

 

 
 
 
 
 
Abstract 
 
We very briefly describe the historical development of nonequilibrium statistical 
mechanics and computer simulation.  We describe how algorithms were developed and 
how they were proved to be correct.  We also describe the impact that the mathematical 
study of chaos has had on nonequilibrium statistical mechanics.  We briefly describe new 
mathematical relationships between transport processes, the Second Law of 
Thermodynamics and chaotic measures. 
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Heat Q, is removed by the thermostat to ensure the possibility of a

nonequilibrium steady state. J is called the dissipative flux. The 

momenta appearing in the equations of motion are peculiar.Equations of motion

dqi
dt =

pi
m + CiFe

dpi

dt = Fi + DiFe ! "pi

" is chosen to keep the peculiar kinetic energy, K, constant:

Gaussian Thermostat dQ

dt
= !2K" = !J• Fe

Fe(t)

time, t

f (#, 0) =
exp[!$H0(#)

d#% exp[!$H0(#)

Initial equilibrium distribution: f (#, t) = exp[!iL(#)t]f (#,0)

Time dependent nonequilibrium distribution

J(t)

]

]
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Liouville Equation for N-particle distribution function 
 
The Liouville equation is analogous to the mass continuity equation in fluid mechanics.  
The “mass” is the number of ensemble members.  This quanitity is conserved (like mass).  
The mass density can change in time either at a fixed position in phase space: 
 
 

 

!f(", t)

!t
= #

!

!"
• [ !"f(", t)] $ #iLf(", t)   

 
or for thermostatted systems, as a function of time, along a streamline in phase space: 
 
 

 

df

dt
= [

!

!t
+ !" •

!

!"
]f = #f$   

 
Λ is called the phase space compression factor, and 
 
 

 

iL = !! •
"

"!
..., iL =

"

"!
• !!..., iL # iL =

"

"!
• !! $ %(!)  

 
Equation of motion of phase function 
 
 

 

dA(!)

dt
= !! •

"A(!)

"!
# iLA(!)  
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Thermostats 
 
Deterministic, time reversible, homogeneous thermostats were simultaneously but 
independently proposed by Hoover and Evans in 1982. Later they realised that the 
equations of motion could be derived from Gauss’ Principle of Least Constraint (Evans, 
Hoover, Failor, Moran & Ladd (1983)). 

The form of the equations of motion is 
 
 

 
!p
i
= F

i
!"p

i
 

 
α can be chosen such that the energy is constant or such that the kinetic energy is 
constant. In the latter case the equilibrium, field free distribution function can be proved 
to be the isokinetic distribution,f(!) ~ "( pi

2 / 2m # 3NkBT / 2)exp[#$(q) / kBT]% .   
 
In 1984 Nosé showed that if α is determined as the time dependent solution of the 
equation 
 
d!

dt
= pi

2 / 2m"( ) / 3NkBT / 2( ) #1$
%

&
' / (

2  
 
then !" , in an ergodic system the equilibrium distribution is canonical 
f(!) ~ exp["H0 (!) / kBT]..
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Thermostatted Response theory 
 
Assume system is canonical at t=0. 
 
 f(!, 0) =

exp["#H0 (!)]

d! exp["#H0 (!)]$
  

 
 f(!, t) = exp["(iL + #)t]f(!, 0)   
 
Using a Dyson decomposition (and some operator algebra) gives, 
 
 f(!, t) = exp[" ds #(s)

0

t

$ ]exp["%H0 ("t)]  
 
For the equations of motion, 
 

 
 

!q
i
=
p
i

m
+C

i
iF

e

!p
i
= F

i
+D

i
iF

e
! "p

i
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From equations of motion, 
 

 

 

dH
0

dt
=
dH

0

dt

ad

+
dH

0

dt

therm

= !J(")iF
e
! 2K#

= 0, !H
0
= 0

= !$, !K = 0.

  

 
but  
 ! = 3N" +O(1) .  
 
This leads in the isokinetic case, to the so-called Kawasaki expression for the 
nonequilibrium distribution function, (Evans & Morriss (1984)). 
 
 f(!, t) = exp["# ds J("s)

0

t

$ • Fe ]f(!, 0)   
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We can use this to compute averages, 
 
 

 

< B(t) >= d!" f(!, t)B(!)

= d!" B(!)exp[#$ ds J(#s)
0

t

" iFe ]f(!, 0)

  

Since 
 

 
 

d < B(t) > /dt = !" d#$ B(#)J(!t)iF
e
f(#, t)

= !" d# B(t)$ J(0)• F
e
f(#, 0)

  

 
We can write averages in terms of the Transient Time Correlation Function, (Evans & 
Morriss, (1984)). 
 
 < B(t) >= !"F

e
• ds

0

t

# < J(0)B(s) >   
 
In the weak field limit we can linearise both Kawasaki and TTCF giving, the Linear 
Response Green-Kubo formula 
 
 

 

lim
Fe!0

< B(t) >= "#Fe i ds
0

t

$ < J(0)B(s) >eq  
 
NB All dynamics is thermostatted and <…> has the external field applied. 
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Further observations concerning thermostats 
 
 
  
• If J(!),B(!) = O 1( ) , then < J(0)B(tNewton ) >eq= O 1 / N( )  and, 
 
 < J(0)B(tNewton ) >eq ! < J(0)B(tthermo ) >eq= O 1 / N2( )  
 
 
 
 • For the infinite family of µ-thermostats, 
 
 

 
!pi! = Fi! " #Sgn(pi! ) | p |i!

µ , ! = x,y,z  
 
Only µ=1 generates an equilibrium state. 
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Green-Kubo Relations for linear thermal (Navier Stokes) Transport Coefficients 
 
1 Self Diffusion coefficient 
 
 

 

D =
1

3
ds

0

!

" < v i (0)iv i (s) >eq   
 
2 Thermal Conductivity 
 
 

 

! =
V

3kBT
2

ds
0

"

# < JQ (0)iJQ (s) >eq   

 
3 Shear Viscosity 
 
 ! =

V

kBT
ds

0

"

# < Pxy (0)Pxy (s) >eq   

 
4 Bulk Viscosity 
 
 !V =

1

VkBT
ds

0

"

# < [p(0)V(0)$ < pV >][p(s)V(s)$ < pV >] >eq  
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NEMD Algorithms for Navier-Stokes transport coefficients. 
 

Dolls Tensor algorithm for flow, H = H
0
+ q

i
p
i
: !u(t)( )

T

"  

 
 

!q
i
=
p
i

m
+ q

i
i!u

!p
i
= F

i
" !uip

i
" #p

i

  

 
(Hoover, Evans, Hickman, Ladd, Ashurst, Moran (1980)). 
 
Evans Heat Flow algorithm 

 

 

!qi =
p i

m

!p i = Fi ! (Ei ! E)F

!
1

2
Fijqij iF

j=1

N

" +
1

2N
Fjkq jk iF

j,k=1

N

" !#p i

  

 
where (Evans, (1982)). 
 E = {

pi
2

2mi=1

N

! +
1

2
"ij

i, j

N

! } / N
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Colour Conductivity algorithm for self diffusion 
 

 
 

!q
i
=
p
i

m

!p
i
= F

i
! ic

i
F
c
! "(p

i
! ic

i
J
x
/ #)

  

where 
 

 

J
x
=
1

V
c
i
!x
i

i=1

N

!  and (p
i
! ic

i
J
x
/ ")2 / m

i=1

N

# = 3Nk
B
T   

  
(Evans and Morriss (1983)). 
 
 
Sllod algorithm for shear viscosity is exact for adiabatic planar shear flow 

 
 

!q
i
=
p
i

m
+ q

i
i!u

!p
i
= F

i
" p

i
i!u " #p

i

, which is equivalent to:
 

!!qi =
Fi

m
+ i!"(t)yi   

 
(Evans and Morriss (1984)). 
 
 
The shear flow algorithms must be accompanied by appropriate periodic boundary 
conditions - (Lees, Edwards (1972)). 
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For each algorithm, the Navier-Stokes transport coefficient, L, is evaluated as 
 
 L(0) = lim

F!0
lim
t!"

1

F
e
t

ds
0

t

# J(s)   

 
Note: NEMD algorithms and Green Kubo relations are also known for thermal and 
mutual diffusion (Soret and Dufour effects) in nonideal binary mixtures, and for the 12 or 
so viscosity coefficients of nematic liquid crystals. 
 
 
Advantages of NEMD over Green-Kubo: 
 
• Nonlinear transport can be studied.  GK is solely for linear transport. 
 
• Can study structural changes induced in systems by the nonequilium fluxes and 
 forces. 
 
•  Is usually more efficient than GK.
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Newton's Constitutive Relation for Shear Flow

x

y

z
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Lees-Edwards periodic boundary conditions for shear flow 
 
 
 

= y

x

y ux !

"

L

L
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The Sllod equations of motion are equivalent to Newton’s equations for t > 0+, with a 
linear shift applied to the initial x-velocities of the particles. 
 
 
Sllod  algorithm for shear viscosity 

 
 

!qi =
p i

m
+ i!yi

!p i = Fi " i!pyi " #p i

, which is equivalent to: 
 

!!qi =
Fi

m
+ i!"(t)yi  

 
 

t = 0
-

v
x

  t = 0
+

x

(y)v
x

(y)v
x

(y)> = !yu =<v
x x

v
x

x

 
Therefore Sllod is exact arbitrarily far from equilibrium. 
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We compare the results of direct NEMD simulation against Kawasaki and TTCF for 2-
particle colour conductivity. 



Three lectures on NonEquilibrium Stat Mech at ORNL, April 2008        18 

 

 

0.0086

0.0088

0.0090

0.0092

0.0094

0.0096

0.0 4.0 8.0 12.0 16.0 20.0 24.0

DIR

KAW

TTCF

KAW-BARE

t

Jx

Direct

TTCF

BK and RK

 
J
x

 



Three lectures on NonEquilibrium Stat Mech at ORNL, April 2008        19 

 

Instability of Phase Space Trajectories 
 
 
 
 

!(0)
!(t)

.

.

"V!(0) "V!(t)

 
 

The deformation of a small initial phase space volume element, !V
" (0)

around !(0)  to an 
evolved volume element !V

" ( t )
.  Both volume elements contain the same number of 

ensemble members. 
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!0(0)

!1(0)

!3(0)

!1(t)

!0(t)
!3(t)  

 
The mother and first daughter trajectories !

0
(t),!

1
(t)  evolve according to the natural 

dynamics of the system.  The first daughter is infinitesmally close to 
mother | !

0
(t) " !

1
(t) |# 0 .  The largest lyapunov exponent !

1
 is defined, 

 
 lim

t!"

| #
1
(t) $ #

0
(t) |= | #

1
(0) $ #

0
(0) | e

%1t  
 
If we now choose a second infinitesmally nearby daughter trajectory, !

2
(t), such that, 
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!
1
(t) " !

0
(t)( )i ! 2

(t) " !
0
(t)( ) = 0, #t , 

 
then the second largest Lyapunov exponent is defined as, 
 
 lim

t!"

| #
2
(t) $ #

0
(t) |= | #

2
(0) $ #

0
(0) | e

%2 t . 
 
There are 6N Lyapunov exponents !

1
> !

2
> !

3
> !

4
,....{ }. The 6N dimensional phase space 

volume evolves as, 
 
 lim

t!"
lim

#V($ ,0)!0
#V($(t), t) = #V($, 0)exp[ % i t]

i=1

6N

&  

 
The Liouville equation states that, (1/f)df/dt = 3Nα.  We can see that the accessible 
volume of phase space, V~1/f, decreases to zero. 
  

 lim
t!"

d# f(#, t)
d ln[f(#, t)]

dt$ = %
d ln&V # t( )( )

dt
Fe

= % '
i

i=1

6N

( = 3N )
Fe
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If  
 

!H0 = 0 = !Pxy"V ! # pi
2 / m$  then for isoenergetic shear flow in a nonequilibrium steady 

state 
 
: 
  
 ! "( ) =

#k
B
T

V" 2
$
i
(" )

i=1

6N

%   
  
We this the Lyapunov Sum Rule  for shear viscosity (Posch and Hoover (1988)). 
 
 
 
 
Conjugate Pairing Rule 
 
For Hamiltonian systems, or more precisely symplectic systems that are thermostatted 
by a homogeneous Gaussian thermostat, ergostat or Nose-Hoover thermostat, the 
Lyapunov exponents occur in conjugate pairs, λi, λi'.   
 
 !

i
+ !

i '
= " < # >= 2!   

 
This relationship is referred to as the Conjugate Pairing Rule, (Evans Cohen and Morriss 
(1990)). 
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Lyapunov spectrum for colour conductivity. 
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Lyapunov spectrum for thermostatted shear flow. 
Using the Conjugate Pairing Rule the shear viscosity can be related to the maximal 
Lyapunov exponents, 
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 ! "( ) =
#3nk

B
T

" 2
[$

max
"( ) + $

min
"( )] ,   

In order to calculate λmin, normally an extraordinarily difficult task; we calculate the 
largest Lyapunov exponent for the time reversed anti-steady state: 

43210
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Pxy(.5,f)

Pxy(.5,r)

time

-P
x

y
t
1/2

t
M

Steady State

Antisteady State

re
v
er

se
 t

im
e

 
!min (steady state) = "!max (anti steady state)  

 
Observation: Anti steady states are less stable than the usual steady state but that is 

NOT why entropy production is positive.
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The figure above compares the shear viscosity computed directly using NEMD with the 
value obtained using the Conjugate Pairing Rule. 
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Transport Coefficients and the Kaplan-Yorke Dimension 
 
The Kaplan-Yorke dimension of a nonequilibrium steady state is defined as, 
 

 D
KY

= N
KY

+

!
i

i=1

NKY

"

!
NKY +1

 

 
N
KY

is the largest integer for which !
i

i=1

NKY

" > 0  

m(x,F
e
)

x

1

d(F
e
)

0
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Then from this definition one can derive an exact formula for the linear transport 
coefficient (Evans, Cohen, Searles & Bonetto (2000)). 
 
 
 L(0) = lim

Fe!0

(2dN " f " D
KY
(F

e
))#

max
(F

e
= 0)nk

B
T

NF
e

2
. 

 
This equation has a status that is equivalent to that of a Green-Kubo relation for transport 
coefficients. 
 
The corresponding expression for the Kaplan-Yorke dimension of the steady state 
attractor is, 
 
 D

KY
(F

e
) = 2dN ! f !

L(0)F
e

2
V

"
max
(F

e
= 0)k

B
T
+O(F

e

4
) 

 
In practice the dimensional reduction in real non turbulent Navier-Stokes fluids is tiny  
O(1/N

A
)!! 
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Summary:  Exact formulae for transport coefficients 
 
Constitutive Equation - definition:  
 

J(F
e
) ! "L(F

e
)F
e
 

Green-Kubo relation: 
 

lim
Fe!0

< J(t) >= "#V ds
0

t

$ < J(0)J(s) >eq •Fe % L(0)Fe  
Kaplan-Yorke relation: 
 

L(0) = lim
Fe!0

(2dN " f " D
KY
(F

e
))#

max
(F

e
= 0)nk

B
T

NF
e

2
 

Transient Time Correlation Function:  
 

< J(t) >= !"V ds
0

t

# < J(0)J(s) > •F
e
$ L(F

e
)F

e
 

Kawasaki:  
< J(t) >= J(0)exp[!" ds J(!s)

0

t

# • Fe ] $ L(Fe )Fe  
Conjugate Pairing Rule: 
 

L F
e( ) =

!3nk
B
T

F
e

2
["

max
F
e( ) + "

min
F
e( )] ,
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